Vieta–Fibonacci-like polynomials and some identities

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized Bivariate Fibonacci-Like Polynomials and Some Identities

In [3], H. Belbachir and F. Bencherif generalize to bivariate polynomials of Fibonacci and Lucas, properties obtained for Chebyshev polynomials. They prove that the coordinates of the bivariate polynomials over appropriate basis are families of integers satisfying remarkable recurrence relations. [7], Mario Catalani define generalized bivariate polynomials, from which specifying initial conditi...

متن کامل

Some Identities for Chandrasekhar Polynomials

Basic techniques of linear algebra are used to derive some identities involving the Chandrasekhar polynomials that play a vital role in the spherical-harmonics (A) solution to basic radiative-transfer problems. @ 1997 Elsevier Science Ltd. All rights reserved

متن کامل

Some Plethystic Identities And Kostka-Foulkes Polynomials

plays an important role in the Garsia-Haglund proof of the q, t-Catalan conjecture, [2]. Let ΛQ(q,t) be the space of symmetric functions of degree n, over the field of rational functions Q(q, t), and let ∇ : ΛQ(q,t) → Λ n Q(q,t) be the Garsia-Bergeron operator. By studying recursions, Garsia and Haglund show that the coefficient of the elementary symmetric function en(X) in the image ∇(En,k(X))...

متن کامل

Jack Polynomials and Some Identities for Partitions

We prove an identity about partitions involving new combinatorial coefficients. The proof given is using a generating function. As an application we obtain the explicit expression of two shifted symmetric functions, related with Jack polynomials. These quantities are the moments of the “α-content” random variable with respect to some transition probability distributions.

متن کامل

Some Identities on the q-Tangent Polynomials and Bernstein Polynomials

In this paper, we investigate some properties for the q-tangent numbers and polynomials. By using these properties, we give some interesting identities on the q-tangent polynomials and Bernstein polynomials. Throughout this paper, let p be a fixed odd prime number. The symbol, Zp, Qp and Cp denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of algebraic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Az Eszterházy Károly Tanárképz? F?iskola tudományos közleményei

سال: 2021

ISSN: ['1216-6014', '1787-6117', '1787-5021', '1589-6498']

DOI: https://doi.org/10.33039/ami.2021.09.002